If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+x^2=72
We move all terms to the left:
3x+x^2-(72)=0
a = 1; b = 3; c = -72;
Δ = b2-4ac
Δ = 32-4·1·(-72)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{33}}{2*1}=\frac{-3-3\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{33}}{2*1}=\frac{-3+3\sqrt{33}}{2} $
| 6q+q-4q+3q-2q=20 | | 0.33x+x=1808 | | 7v-2=4(v+4) | | 44/x=0 | | 20-2x=30-5x | | 9(x-6)=-6x-39 | | .05x-0.5=0.75+1-x | | 7u-2=-9(u+2) | | 6(w-5)=9w-9 | | -3(7p+5)=35 | | 13+k=31 | | 2x-(364.5/x^2)=0 | | -2+2x+1=9 | | 2x-9=3x+11 | | (7^x)-7^(1-x)=6 | | 2+6x=54 | | 13x-24=106 | | 180=90+(2x-10)+(x+25) | | 20-w=4w | | 5v+48=13v | | 1x+3+1x+3=54 | | 21.21+p=101.6 | | 5u2+26u=-5 | | 8x-18×=0 | | 8+x=76 | | -1(3-x)=-2x-9=-2 | | 5/10=u/4 | | 5x18^6x=26 | | 5x-25=10x+15 | | 5•18^6x=26 | | 3(3w-4=-20 | | Y=10/9x+7 |